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Abstract We investigate the predictions of raidom-maPix theory for eigenvector staIistics 
and compare them with numerical results obtained for the dissipative kriodieally kicked top. 
Different types of statistics are found. In comast to conservative dynamics they are connected 
with the types of eigenvalue of the propagator rather than with the symmetries of Hamiltonian 
evolution. 

Random-matrix theory (RMT) [ 1,2] has proven itself very successful in its predictions for 
eigenvalue statistics of quantum systems with a chaotic classical limit 13-51, It has been 
demonstratea that spectra of Hamilton 'or evolution (Floquet) operators differ in cases of 
classically regular and chaotic motion. The level-spacing distributions obtained for chaotic 
systems fit the results obtained from RMT for Gaussian or circular ensembles, respectively. 
The symmetry properties of the quantum system determine which of the three universality 
classes-xthogonal, unitary or symplectic-should be used. The fourth universality class, 
a Poissonian one, corresponds to regular motion. Similar results were obtain@ for the 
statistics of eigenvector components [5-131. It has been shown that the statistical properties 
of eigenvectors can also be treated as, a signature of quantum chaos and the statistics 
of eigenvectors of chaotic systems conform to the known theoretical distributions for 
orthogonal, unitary or symplectic ensembles. The main profit from eigenvector analysis 
is that the data available for statistics are much greater than the number of eigenvalues. 

Recently there has been~an interest in the application of RMT to quantum dissipative 
systems. It has been shown that the level spacing distribution of the quantum propagator 
for the periodically kicked dissipative top coincides with predictions obtained from RMT for 
an ensemble of arbitrary complex matrices (Ginibre ensemble). The cubic level repulsion 
found in the case of fully developed .chaos (and ,reasonable high damping) may serve as 
a signature of quantum chaos since, for regular motion, linear repulsion was observed. 
Besides, the universality of cubic level repulsion, which is a characteristic of quantum chaos, 
was observed, that is level repulsion is independent of the symmehj of the Hamiltonian 
evolution [14,15]. 

In this paper we discuss the eigenvector statistics~for dissipative systems and compare 
them with predictions obtained f r o m ~ w .  As a model pf a dissipative physical system we 
adopt the weU known periodically kicked spin system. A detailed description of this model 
may be found, for example, in [5]. Due to the dissipation the system has to be described by 
a density matrix p.  It is assumed that the evolution consists of two separate steps described 
by operators L and A: 

. .  

~ ( t  + 1) = = exp(A) exp(L)p@) (1) 
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where exp(L) represents standard unitary motion 

exp(l)p = F ~ F +  

P Peptowski and F Haake 

with F defined by 

F = exp(-ipJz) exp ( -I- .Kif) exp ( - i y )  

while the generator A, describing damping, is obtained from the formula 

1 
Ap = - { Y I ( [ J + .  PJ-1-k HC) + Yz([J- ,  p J + ]  + HC)}. 

2 j  
The dissipative pat, which is more general than in [14,15] (it takes into account the 
temperature of reservoirs), is chosen so that the squared angular momentum Jz = j ( j + l )  is 
conserved. Moreover, the form of unitary operator F pertains to two classes of Hamiltonian 
evolution: unitary and orthogonal (we do not discuss here the third class, the symplectic 
one). Therefore we can investigate whether the class of Hamiltonian evolution influences 
the eigenvector statistics for a dissipative system. Let us note that, for given value of j ,  p 
is a ( 2 j  + 1) x ( Z j  + 1) matrix, while D is a ( 2 j  + 1)2 x ( Z j  + 1)2 matrix. Thus, for given 
j ,  the computer requirements (storage and time) for a dissipative problem are much greater 
than for a conservative one. 

Let us now consider the eigenvalue problem for the quantum propagator D: 

DPk = A k P k .  (2) 

It is convenient to treat eigenvectors pk as ( 2 j +  1) x ( 2 j  + 1) matrices. Then the eigenvalue 
problem (2) possesses the following properties: 

(i) the eigenvalues of D are either real or come in complex conjugate pairs; 
(ii) if Ak is real, the eigenvector p& is a Hermitian matrix; and 
(iii) if 
These statements can be easily deduced from conservation of Hermiticity: ( D p )  = Dpt ,  

the property any generator of dissipation has to fulfil [5]. 
We now assume that D is a random matrix with the properties just described. In the 

case of eigenvalue statistics the Ginibre ensemble of random matrices was chosen, but 
then only complex eigenvalues were considered [15]. Since we are also going to treat 
eigenvectors corresponding to real eigenvalues another ensemble has to be proposed. One 
possible choice is the ensemble of random real asymmetric matrices since any generator of 
dissipation, due to the conservation of Hermiticity, may be represented as a real matrix [5]. 
Statistical properties of eigenvalues of such random matrices were recently discussed by 
Lehmann and Sommers [161. Another choice is motivated by the construction of generator 
D (1). We consider an ensemble of complex matrices of the following form: R . (S ~3 S*), 
where R is a real asymmetric nz x n2 matrix and S is a member of circular ensemble of 
n x n matrices. The product of two n x n matrices is a nz x nz matrix defined by the 
formula ( A  8 B)(i-l).m+k,(j-I)*n+I = Ai,j&,i. 

The only characteristic of an eigenvector of D is the norm itself. Consider the real 
eigenvalue hk, then there are N = 2 j + 1 real elements x, on the diagonal of the matrix p& 
and M = j ( 2 j  + 1) complex off-diagonal components c,,, = y, + iz, such that 

is complex, then p,t is an eigenvector to the eigenvalue 1;. 
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The joint probability density for the components of a Hermitian eigenvector must therefore 
be 

the constant being fixed by normalization. The quantities convenient to compare with 
numerical data are the reduced densities of X I  

and of cl 

For a complex eigenvalue ha the situation is different as there are N = (2j+1)2 independent 
complex components of the corresponding eigenvector px. We notice ,that the same numbers 
define the eigenvector pf = p,‘ corresponding to the eigenvalue hr= A;. The situation is 
similar to Kramers’ degeneracy in the Hamiltonian case. However, since the eigenvalues 
are different,.the corresponding eigenvectors are uniquely defined (up to phase factor) by 
any diagonalization routine and the reduced density of cl is a well defined quantity: 

with the corresponding distribution Pc([cm]) 

The integration in (4)-(6) may be performed explicitly- with the help of the following 
formulae [9]: Let 

be the properly normalized joint distribution. Integrating out d -1  of the variables x, yields 
the result 

A direct application of this formula leads to the following densities: 
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where N = (2 j  + 1)’. 
For N >> 1 the mean value ( A )  is proportional to 1 I N .  It is much more convenient 

to use the rescaled variable y with unit mean value (y) = 1 [13J. With the help of some 
algebra the above distributions take the following forms: 

P A Y )  = 1 e-Y/z (13) 

P,,(y) = P&) = e-y. (14) 

One easily notices that (13) and (14) are the distributions obtained for a circular orthogonal 
ensemble and a circular unitary ensemble, respectively. 

We have calculated eigenvectors of D for different values of the parameters. In all 
computations the angular momentum number j was of order of 10. This value is relatively 
small especially with respect to the Hamiltonian case where j is usually of order of 100. But 
for our dissipative model even such a small value as j = 10 leads to a diagonalization of 
the two matrices 221 x 221 and 220 x 220, respectively. We notice that considering the top 
corresponding to the symplectic universality class [5] would lead to the diagonalization of 
the matrix 441 x441. Besides, $ = 10 was sufficient to obtain excellent agreement with the 
predictions of RMT for  the eigenvalue statistics [14]. Figure 1 presents the histograms 
obtained. Figures l(a) and ( b )  refer to the diagonal and off-diagonal components of 
eigenvectors corresponding to real eigenvalues, while figure l(c) presents the results for 
eigenvectors corresponding to complex eigenvalues ( j  = 9.0, yl = 0.1, y2 = 0.25, ,6 = 1.7, 
K2 = 0.0 and, in order to smooth the histograms, ten different values of K1 between 6.0 
and 8.7 were taken). As in 1131 logarithmic scales were used to emphasize the differences 
between the two types of statistics. The full curve describes the distribution corresponding to 
the RMT predictions and the broken curve represents the second of the theoretically predicted 
statistics. We notice that the number of real eigenvalues is of order ( Z j  + l), therefore the 
first two histograms are not as smooth as the third one. Moreover, in drawing histograms 
for real eigenvalues we dropped the eigenvector corresponding to the unit eigenvalue. It is 
the asymptotic state of the system and has a specific form. Let us note that the fitting of 
numerical data to the corresponding theoretical curves is not perfect. We think that this is 
caused by the fact that the propagator is a matrix which is not completely random. Only 
F can be considered as random, i.e. (2 j  + u4 elements of e’ are determined by (2 j  + I)’ 
elements of the random matrix F .  Moreover, we have checked that the accuracy of fitting 
does not depend on j ,  at least for 7.0 6 j < 12.5. 

The parameters in figure 1 correspond to the orthogonal universality class of the operator 
F. Figure 2 presents a comparison of the statistics of the orthogonal and unitary universality 
classes for complex eigenvalues. Both classes differ only by the value of constant KZ 
which is equal to 0.0 and 1.0 for the orthogonal and unitary cases, respectively (all the 
remaining parameters of F are the same as in figure 1). It is intuitively clear that with the 
damping going to zero the statistics should approach, in some way, those obtained for the 
conservative evolution. Therefore in figures Z ( Q ~ ( C )  we compare the histograms pertaining 
to the two classes for three different values of damping: (yl = 0.1, y2 = 0.25), (yl = 0.005, 
y2 = 0.0125) and yz = 0.31 x lo4), respectively. One can see that 
the differences between the universality classes are suppressed with increased damping, so 
that both histograms in figure Z(a) are, in principle, indistinguishable. An analogous result 
was obtained for eigenvalue statistics [15]. On the other hand, for very small damping 
(figure 2(c)) both histograms differ considerably. A comment concerning the second hump 
in the histogram in figure 2(c) is necessary. Due to the structure of D approximately half 

= 0.13 x 
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Figure 1. Histograms of the distribution of eigenvector 
elements computed for diagonal (a) and off-diagonal 
(b) components of eigenvectors corresponding to 

01 ../- 5, real eigenvalues and for eigenvectors corresponding 
to complex eigenvalues (e ) .  The smooth curves 
m m p o n d  fa the theoretically predicted distributions. 
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0 1  Figure 2. Comparison of two universality classes 
for different strenglhs of damping. Histograms drawn 
by broken and full lines correspond to orthogonal 
and unitary classes. respectively, while smooth curves 
represent the corresponding theoretical results (see text). 
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the components of any eigenvector pk are equal to zero. For zero-damping the eigenvectors 
of D are constructed from eigenvectors of F in the following way: 

D I W W! I = I W (11.1 I (15) 
where 
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and the structure of F implies that either j or j f 1 components of I$k) are zero. Thus for 
zero-damping only about ( Z j  f 1)2/4 components of any eigenvector p~ may be non-zero, 
and additional ( Z j  + 1)'/4 components become non-zero with increased damping. These 
additional components form the left-sided hump in figure 2(c). The other hump should be 
described (in the l i t  of zero-damping) by one of the following distributions: 

P Peptowski and F Hadie 

pCUE(Z) = ZKO@%'% (18) 

where KO is the modified Bessel function. Formulae (17) and (18) follow directly from the 
rules for the distribution of a product of random variables: 

P(z) = / ~ ~ Y P ( ~ ) P ( Y ) ~ ( * Y - z )  

where for p(y) we used either (13) for PCOE or (14) for P ~ E .  Both resulting distributions are 
presented in figure Z(c) as smooth (broken and full) curves. In fact we compare histograms 
with rescaled distributions P ( z )  /2. 

Figure 3. Comparison of eigenvector statistics for 
chaotic and regular motion. For chaotic motion all data 
are the same as in figure l(c) and, for regular motion 

Ten different values of KI between 1.0 and 2.35 were 
taken. 

We would like to conclude with the question of  signatures of quantum chaos. In figure 3 
we show histograms of Pc(y) for parameters corresponding to classical chaos and classically 
regular motion. As can be seen from *is picture there is a considerable difference between 
these two cases. The regular case can~be characterized by a long tail which is also typical 
for the pure Hamiltonian case [13]. Therefore the eigenvector statistics may serve as a 
signature of quantum chaos. In some respect it is an even better criterion than eigenvalue 
statistics. Although the numerical computation of eigenvectors is more time consuming 
than computations of eigenvalues alone. one obtains more data to compare with theoretical 
predictions. 

Support by Sonderforshungsbereich 'Unordnung und groBe Fluktuationen' der Deutschen 
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